Transthyretin Regulates Thyroid Hormone Levels in the Choroid Plexus, But Not in the Brain Parenchyma: Study in a Transthyretin-Null Mouse Model.

نویسندگان

  • Joana Almeida Palha
  • Rui Fernandes
  • Gabriella Morreale de Escobar
  • Vasso Episkopou
  • Max Gottesman
  • Maria Joa O Saraiva
چکیده

Transthyretin (TTR) is the major T4-binding protein in rodents. Using a TTR-null mouse model we asked the following questions. 1) Do other T4 binding moieties replace TTR in the cerebrospinal fluid (CSF)? 2) Are the low whole brain total T4 levels found in this mouse model associated with hypothyroidism, e.g. increased 5'-deiodinase type 2 (D2) activity and RC3-neurogranin messenger RNA levels? 3) Which brain regions account for the decreased total whole brain T4 levels? 4) Are there changes in T3 levels in the brain? Our results show the following. 1) No other T4-binding protein replaces TTR in the CSF of the TTR-null mice. 2) D2 activity is normal in the cortex, cerebellum, and hippocampus, and total brain RC3-neurogranin messenger RNA levels are not altered. 3) T4 levels measured in the cortex, cerebellum, and hippocampus are normal. However T4 and T3 levels in the choroid plexus are only 14% and 48% of the normal values, respectively. 4) T3 levels are normal in the brain parenchyma. The data presented here suggest that TTR influences thyroid hormone levels in the choroid plexus, but not in the brain. Interference with the blood-choroid-plexus-CSF-TTR-mediated route of T4 entry into the brain caused by the absence of TTR does not produce measurable features of hypothyroidism. It thus appears that TTR is not required for T4 entry or for maintenance of the euthyroid state in the mouse brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transthyretin is not necessary for thyroid hormone metabolism in conditions of increased hormone demand.

Thyroid hormones circulate in blood mainly bound to plasma proteins. Transthyretin is the major thyroxine plasma carrier in mice. Studies in transthyretin-null mice revealed that the absence of transthyretin results in euthyroid hypothyroxinemia and normal thyroid hormone tissue distribution, with the exception of the choroid plexus in the brain. Therefore, transthyretin does not influence norm...

متن کامل

Transport of thyroid hormones via the choroid plexus into the brain: the roles of transthyretin and thyroid hormone transmembrane transporters

Thyroid hormones are key players in regulating brain development. Thus, transfer of appropriate quantities of thyroid hormones from the blood into the brain at specific stages of development is critical. The choroid plexus forms the blood-cerebrospinal fluid barrier. In reptiles, birds and mammals, the main protein synthesized and secreted by the choroid plexus is a thyroid hormone distributor ...

متن کامل

Proteomic comparison of human and great ape blood plasma reveals conserved glycosylation and differences in thyroid hormone metabolism.

Most blood plasma proteins are glycosylated. These glycoproteins typically carry sialic acid-bearing sugar chains, which can modify the observed molecular weights and isoelectric points of those proteins during electrophoretic analyses. To explore changes in protein expression and glycosylation that occurred during great ape and human evolution, we subjected multiple blood plasma samples from a...

متن کامل

Chronic lead exposure alters transthyretin concentration in rat cerebrospinal fluid: the role of the choroid plexus.

The choroid plexus, which is responsible for the maintenance of the biochemical milieu of the cerebrospinal fluid (CSF), avidly sequesters Pb. In order to test the hypothesis that chronic Pb exposure may impair choroid plexus function, male weanling Sprague-Dawley rats were exposed to Pb in drinking water at doses of 0, 50, or 250 micrograms Pb/ml (as Pb acetate) for 30, 60, or 90 days. The fun...

متن کامل

Transport of Thyroid Hormone in Brain

Thyroid hormone (TH) transport into the brain is not only pivotal for development and differentiation, but also for maintenance and regulation of adult central nervous system (CNS) function. In this review, we highlight some key factors and structures regulating TH uptake and distribution. Serum TH binding proteins play a major role for the availability of TH since only free hormone concentrati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Endocrinology

دوره 141 9  شماره 

صفحات  -

تاریخ انتشار 2000